
Breakout Session Fusion
~ Internal and External, Yin and Yang, Holistic Unity… ☺

(The “un-scientific” ones…)

What are the barriers to reuse?

What are the broad categories of things we should be focusing on?
 What to standardize?

How do we move forward?

Barriers to Reuse

1. Incompatible Data Models!
2. Incompatible Control Models

a. Every tool/framework wants to be main(), imply its own control structure.
3. Monolithic Infrastructure
4. Limited Interface Exposure

a. Documentation…?
5. Availability / incentives for code sharing

a. No reward system for open sourcing
6. Performance
7. Unique Requirements

a. Specialized needs preclude “full” reuse of existing tools/technology
8. Parallelism

a. Startup
b. Parallel Data Models
c. Orchestration of Serial Components

9. Programming Languages / Interoperability
10. Licensing…

a. Recent progress in DOE…
11. Tight Coupling to GUI
12. Lack of a Public Forum / Community

a. No Code Repository
13. Combinatoric Variations on individual functional blocks

a. Grids, data types, parallelism
14. Lack of Orthogonal Decompositions
15. Incompatibility of Input and Output (Display) Devices
16. Data Transport Mechanisms
17. Testing, verification and quality of code

a. Unit and regression testing…
18. Portability

Strategies for Alleviating these Barriers:

1. [Polly](Data Models) Adopt a Hub/Spoke Scheme for Data Model
Interoperability

a. Utilize Generalized Adaptor/Accessor Wrappers to Translate
2. [Steve](Control Models) Target multiple “F”-rameworks with a disparate variety

of control models (how many will it take?)
a. “F”-rameworks imply a specific execution model
b. “f”-rameworks are a means for organizing/integrating independent tools

3. [Andrew](Monolithic Infrastructure) Encourage fine-grained reuse
4. [Sam](Interface Exposure)

a. Identify interfaces to be standardized
b. Create “committees” to develop and agree on those standards

i. The simplest and most productive committee is N=1. ☺
c. Document and publish standard viz interfaces
d. Encourage use of those standards

5. [Mike](Sharing)
a. Big Stick / Money Approach ~ Require Office of Science project

deliverables be compatible with the blessed F/f-ramework(s)…
i. Programmatic support, encouragement or requirements for sharing

viz tools / interfaces…
ii. Support for creating “best” solutions, attractive tools and interfaces

for community adoption…
iii. Yet need to avoid constraining revolutionary developments…!

b. Culture a publication venue for visualization tools
6. [Mark](Performance) Maintain/improve the performance of existing technology

a. Design components and interfaces with performance in mind
b. F/f-ramework cannot preclude performance
c. Quantify performance impacts of standardized interfaces
d. Provide performance monitoring and analysis capabilities

i. Develop performance model interfaces to viz components
7. [Mark](Unique Requirements)

a. Big problem will not go away, we can only minimize & manage it…
i. Reduce the granularity of components to improve degree of reuse

ii. Design hierarchical/extensible interfaces for specialized capabilities
iii. Rapid prototyping / composition

b. Open source helps, too… (Steal & “customize” existing code)
8. [Jeeem](doc)(Parallelism) Needs to be implicit in the whole process.

a. Every interface must address parallelism (or justify why not)
b. Thread safety is important (at least identify safe or not!)
c. Utilize fine-grained serial components that can be composed in parallel

i. Not always possible… Not always efficient enough…

d. Port existing tools to parallel / multi-threaded environments
i. Ensure that F/f-ramework compositional mode supports parallelism

ii. Interfaces are designed with parallelism in mind
iii. Categorize the parallelism constraints of components and interfaces

9. [Andrew](Language Interoperability)
a. Two Options: Pick ONE Language, or Use something like SIDL/BABEL

i. True language interoperability limits performance
1. Restricts sharing of complex constructs across languages

ii. Rely on “experts” to help save us!?
b. Can we simply pick a common subset of languages (C/C++ and python) for

our purposes, and use SIDL/BABEL for integration with applications…?
i. We will make recommendations for languages and interoperability.

ii. We will decide on generic or language-specific interfaces
10. [Wes](Licensing) Promote DOE Open Source Licensing!

a. Form licensing requirements for component repository
i. Avoid infecting / poisoning code with “evil” licenses…

b. DOE cannot enforce a single all-encompassing license
i. Must support a range of possibilities…

ii. A given component can be multiply licensed (yuk)…
iii. Need for DOE-wide solution to expedite integrated software release?

c. Decide on licensing for common F/f-ramework code
11. [Polly](Coupling to GUI)

a. “Good” design decouples front-end GUI from back-end components.
i. Event-based, etc.

b. Develop or adopt generalized UI descriptions and intermediate
protocol/meta-language (e.g. XML) for interfacing to front-end GUIs

i. Web-based
ii. Wimp

iii. VR
c. Remain “agnostic” – don’t pick a single GUI environment…

12. [Mike](Public Community)
a. Create a viz interface and component web site and repository.

i. Easy to set up, harder to get approval for postings…
ii. Create a SourceForge-based community site?

iii. Promote continued viz frameworks workshops like this one! ☺
13. [Steve](Combinatoric Variations)

a. Design interfaces/components that handle arbitrary grids, data types, etc…
b. Foster creation of flexible viz interfaces that accommodate various

combinations, e.g. hub & spoke.
14. [Mark](Orthogonal Decompositions)

a. Develop set of “best practices” for designing viz tools
15. [Mike](Devices)

a. Develop or adopt API for input device events
i. E.g. SNL’s “Dors” system for multiplexing to “virtual displays”…

b. Is Chromium the answer for display devices…?
i. Doesn’t handle every scenario… (A la DMX)

c. Develop or adopt multi-pipe API for displays
d. “Raw hand-to-hand combat with display technology”

i. Would seem an easy target for cooperation…?
ii. Have a workshop on multi-display technology

16. [Wes](Data Transport Mechanisms) Yes. ☺
a. Need the “ftp” equivalent for moving images, pixels, etc…
b. Create serialization interfaces/capabilities for viz-specific objects/data…

i. Wire protocols…
c. Adopt other community standards where appropriate (Globus?)

17. [Nagiza](Testing) Require test suites for code repository approval
18. [Polly](Portability) Develop “best practices”

a. Consider portability in language recommendations and interface design…

Definitions:

• f-ramework == “community interoperability strategy”?
• F-ramework == “framework” ☺

<BREAK>

